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Motivations : Large-Scale Discrete Optimal Transport

document 1 ] . ‘greets’ document 2
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word2vec embedding

@ Document d; = histogram of words

e Word wy = point in R? for a certain embedding (usually learnt with
neural networks, e.g. Word2Vec)

e Document ~ weighted cloud of points in RY = d; ~ u; = > k0w,

@ Distance between 2 documents dy, d> is the optimal transport distance
between the associated point clouds p1, .
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Motivations : Semi-Discrete Optimal Transport

o Given a cloud of points (xi,...,xuy) in RY

e We want to fit a (parametric) statistical model to this cloud : we
choose a family of probability measures with parametric densities
du(x,0) = f(x,0)dx

@ Find 6 that minimizes the optimal transport distance between ;. and
v = Z:—l N5X
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Optimal Transport

Two positive Radon measures 1 on X and v on ) of mass 1
Cost c¢(x, y) to move a unit of mass from x to y
Set of couplings with marginals 1 and v

M) 2 fr € ML(X x V) | 7(A x V) = p(A), (X x B) = u(B)}

What's the coupling that minimizes the total cost?

v \ V= Z/ g,

<
Y
Il
12 X
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Kantorovitch Formulation of OT

The optimal overall cost for transporting . to v is given by

W(u )= min / e,y )dn(x,y) (P.)
m€M(w,v) Jxxy
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Kantorovitch Formulation of OT

The optimal overall cost for transporting . to v is given by

W.(u,) = min /X bty teKLne ) (P)

meN(p,v)
where
KL(r|p @ v) = / (log ( dr (x,y)) — 1)dn(x, y)
XXy d,LLdV
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Kantorovitch Formulation of OT

The optimal overall cost for transporting . to v is given by

Wpr) = min [ clayda(xy) + ekl (P)
m€N(ur) Jxxy

where

KL(rln®v) /X Lo dizy(x,y)) ~ 1)dn(x,y)

Adding an entropic regularization smoothes the constraint. In particular it
yields an unconstrained dual problem.
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Reminder on convex duality

Primal problem:

miny f(x)

subject to  hi(x) =0 fori=1...m

Lagrange dual function:

Dual problem:
m/{axg(/\)

Under good assumptions, both problems are equivalent.
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Dual formulation of OT

W)= max /X u(x)dpa(x) + /y V)du(y) — v (uv) (D)

ueC(X),veC(y)

where the constraint set U. is defined by

Ue = {(u,v) €C(X) x C(V) ; ¥(x,y) € X x YV, u(x) + v(y) < c(x,y)}
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Dual formulation of OT (with entropy)

W)= max a0 + /y Y)Anly) — i (u,v)

and the smoothed indicator is

il e [ ea(E =L auay)
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Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This
yields :

u(x) = min c(x,y) = v(y)
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Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This
yields :

u(x) = min c(x,y) = v(y)

Plugging back in the dual :

We(ur) = max /X min (c(x, ) — v(y)) du(x) + /y V()di(y) — e

velC(Y) yey
= max Eufmin (c(ey) —vi) + [ viy)iny) <]
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This

yields :
() —etog ( [ ("= Lyany))

e
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This

yields :
() —etog ( [ ("= Lyany))

€
Plugging back in the dual :

We(p,v) = Jmax /X —¢log ( /y em(WMVW)) dy(y)
+ /y v(y)dv(y) —e

= max E,[—clog (/yexp(v(y)_c(x’y))>

veC(Y) €
v(y)dr —
" /y (y)du(y) — <]
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We consider 2 frameworks :

o Semi-Discrete : 1 is continuous and v = Zj-‘il v;idy; The optimization

problem is
= () b))
max E.| —clog E exp(f) + E v(yj)vj —e
v
j=1 j=1
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We consider 2 frameworks :

o Semi-Discrete : y is continuous and v = " 1;5y; The optimization

j
problem is
oo 00 <o) ) LS
max E.| —clog Zexp(f) +Zv(yj)1/j—5
v j=1 j=1

@ Discrete : u = Z,N:l wiox; and v = ZAil vidy; The optimization

j
problem is
. N v(y) ) ) L o
max —¢lo ex J D2 + vy v, —e|
VGRM; g ; p( . ) JE_; () —e|m
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Stochastic Optimization

Computing the full gradient is

@ Hard in the semi-discrete setting (even impossible if we don't know p
explicitly)
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Stochastic Optimization

Computing the full gradient is
@ Hard in the semi-discrete setting (even impossible if we don't know p
explicitly)
@ Very costly in the discrete case since we need to compute N gradients
and sum them.
The idea of stochastic optimization is to use approximate gradients so that
each iteration is inexpensive.
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Stochastic Optimization |

e Goal : maximize H.(v) = E, [h:(X, v)] over v in RM.

Standard gradient ascent :

Conclusion

@ The whole gradient V, H.(v) is too costly/complicated to compute

gradient in the gradient ascent.
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Stochastic Optimization |l

Algorithm 1 Averaged SGD
Input: C
Output: v
v Oy, Vv
for k=1,2,... do
Sample xx from p

Vi v+ %Vvhs(xk, v)  (gradient ascent step)

V4 zv+ 51y (averaging)
end for

@ cost of each iteration M
o convergence rate O(1/+/(k))
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Stochastic Optiization : Case of a Finite Sum |

In the specific case where i is also a discrete measure, we are minimizing a
finite sum of N functionals :

N

" oo 00 b)) LS
max Z —¢log Zexp( Y AR/ ) —i—Zv(yj)l/j—e Wi
j=1

M g
verR¥

Jj=1

A more efficient algorithm consists in using an average of the past gradients
as a proxy for the full gradient :

o At iteration k, an index i is drawn. Its gradient V, h.(x;, v(¥)) is
updated in the vector of partial gradients (vector with N entries kept in
memory).

@ The average gradient is updated accordingly, and used in a step of the
gradient ascent
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Stochastic Optiization : Case of a Finite Sum Il

Algorithm 2 SAG for Discrete OT
Input: C
Output: v
V(—OM, deOJ, Vi,g; %OM
for k=1,2,... do
Sample i € {1,2,...,1} uniform.
d«d- g
g« wiVyhe(xi,v)
d«—d+gi;ve«v+Cd
end for

@ cost of each iteration M

e convergence rate O(1/k)
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Numerical Results for Word Mover's Distance (Discrete OT)

1-Norm of Gradient Speedup of SAG vs. Sinkhorn Deviation to Optimal Dual
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Figure 1: Results for the computation of 595 pairwise word mover’s distances
between 35 very large corpora of text, each represented as a cloud of / = 20,000
word embeddings.
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Numerical Results for Density Fitting (Semi-discrete OT)
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(a) SGD (b) SGD vs. SAG
Figure 2: (a) Plot of ||vi — v§||, / ||v§]l, as a function of k, for SGD and different
values of ¢ (¢ = 0 being un-regularized). (b) Plot of |vix — v%||, /|[vZ]|, averaged
over 40 runs as a function of k, for SGD and SAG with different number N of
samples, for regularized OT using ¢ = 1072.
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Dual Formulation as an Expectation

Recall the dual objective function to be maximized, for ¢ > 0

/Xu(x)d,u(x)—k/yV(Y)dV(Y)

—5/ exp( ulx) + v(yg) — C(X’y))dﬂ(x)d’/(Y)
XxY

Fe(u,v)

Let X ~ pand Y ~ v be two independent random variables, we get

FE(U, V) = Eu@l/ [fa(Xv Ya u, V)]
where Ve > 0,

oy ) u()+ () — cexp (L) —ebor)y
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Reminder on RKHS |

We consider two reproducing kernel Hilbert spaces (RKHS) H and G on X
and on ), with kernels s and /.

Properties of RKHS

(a) if u e H, then u(x) = (u, k(-, x))n

(b) r(x,x") = (k(:, x), £, X)) 3¢

The Gaussian Kernel

For the Gaussian Kernel i.e. r(x,x) = exp(%) the associated RKHS is

dense in the space of continuous functions. This means that any continuous
function can be approximated by a linear combination of Gaussian Kernels.
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Reminder on RKHS I

Figure 3: Approximation of a function by a sum of gaussian kernels. The choice of
the bandwidth is crucial.
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Continuous OT |

£y, u,v) Z u(x) + v(y) — eexp (u(x) - v(yg) - c(x,)/))

Rewriting u(x) and v(y) as scalar products in H and G we get
fE(X7y7 u, V) = <U, H('7X)>H+<V7€('>y)>g

{u, K, X)) w4 (v, €0 ¥))g — C(X,y))_
€

—EeXp(
we can apply the SGD algorithm in the RKHS :
def. C
(uk, vi) = (Uk—1, vik—1) + ﬁvé(xk,)/k, Uk—1,Vk-1) €E L x G, (1)

where (xg, yx) are i.i.d. samples from p ® v.
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Continuous OT

Conclusion

Algorithm 3 Kernel SGD for continuous OT

Input: C, kernels x and ¢
Output: (o, Xk, Yk)k=1,...
for k=1,2,... do
Sample xx from p

Sample yyx from v
k-1 (xk) = S cim(xk, Xi)
def. ~—k—1
vi—1(yi) = 22521 @ilyx, yi)
def. C ”kl(XkHVkl(«Vk)C(Xkﬁyk))

ak:\/E 1—e €

end for
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Continuous OT Il

Proposition : Convergence of SGD in the RKHS
The iterates (ug, vk) defined in (1) satisfy

k
(uk7Vk)déf-zai(ﬁ('?xi%g('vyi)) (2)
i=1
- C ui_1 (i) +vi_1(vi)—c(x;,yi)
where «; d:f'ﬂgr(\ﬁ(l—e I - )), (3)

where (x;, yi)i=1..x are i.i.d samples from p ® v and Mg, is the projection on
the centered ball of radius r. If the solutions of (D) are in H x G and if r
is large enough, the iterates (u,vk) converge to a solution of (D).
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Continuous OT

Conclusion
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Figure 4: (a) Plot of 3—‘; (blue) and % (green). (b) Plot of |lux — d* |, / [|[6*||, as
a function of k with SGD in the RKHS, for regularized OT using e = 1071 (c)
Plot of the iterates wuy for k = 103,10%,10° and the proxy for the true potential G*,

evaluated on a grid where 1 has non negligible mass.
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Conclusion

@ Dual formulations of OT can be rewritten as expectation maximization
problems

@ This allows the use of stochastic optimization methods

@ Surpass Sinkhorn in the discrete setting (online method more efficient
than batch)

@ Tackle semi-discrete and continuous problems without requiring
discretization
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