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Motivations : Large-Scale Discrete Optimal Transport

Document di = histogram of words
Word wk = point in Rd for a certain embedding (usually learnt with
neural networks, e.g. Word2Vec)
Document ∼ weighted cloud of points in Rd ⇒ di ∼ µi =

∑
αk,iδwk

Distance between 2 documents d1, d2 is the optimal transport distance
between the associated point clouds µ1, µ2.
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Motivations : Semi-Discrete Optimal Transport

Given a cloud of points (x1, . . . , xM) in Rd

We want to fit a (parametric) statistical model to this cloud : we
choose a family of probability measures with parametric densities
dµ(x , θ) = f (x , θ)dx
Find θ that minimizes the optimal transport distance between µ and
ν =

∑N
i=1

1
N δxi
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Optimal Transport

Two positive Radon measures µ on X and ν on Y of mass 1
Cost c(x , y) to move a unit of mass from x to y
Set of couplings with marginals µ and ν
Π(µ, ν)

def.
= {π ∈M1

+(X × Y) | π(A× Y) = µ(A), π(X × B) = ν(B)}

What’s the coupling that minimizes the total cost?
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Kantorovitch Formulation of OT

The optimal overall cost for transporting µ to ν is given by

W (µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y)

+ εKL(π|µ⊗ ν)

(Pε)

where

KL(π|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dπ
dµdν

(x , y)
)
− 1
)
dπ(x , y)

Adding an entropic regularization smoothes the constraint. In particular it
yields an unconstrained dual problem.
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Reminder on convex duality

Primal problem:

minx f (x)

subject to hi (x) = 0 for i = 1. . . m

Lagrange dual function:

g(λ) = min
x

f (x) +
m∑
i=1

λihi (x)

Dual problem:
max
λ

g(λ)

Under good assumptions, both problems are equivalent.
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Dual formulation of OT

W (µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιUc (u, v) (Dε)

where the constraint set Uc is defined by

Uc
def.
= {(u, v) ∈ C(X )× C(Y) ; ∀(x , y) ∈ X × Y, u(x) + v(y) ≤ c(x , y)}
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Dual formulation of OT (with entropy)

Wε(µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιεUc

(u, v)

and the smoothed indicator is

ιεUc
(u, v)

def.
= ε

∫
X×Y

exp(
u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)
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Semi-Dual formulation of OT

The dual problem is convex in u and v . We fix v and minimize over u.

This
yields :

u(x)
def.
= min

y∈Y
c(x , y)− v(y)

Plugging back in the dual :

Wε(µ, ν) = max
v∈C(Y)

∫
X
min
y∈Y

(c(x , y)− v(y)) dµ(x) +

∫
Y
v(y)dν(y)− ε

= max
v∈C(Y)

Eµ
[
min
y∈Y

(c(x , y)− v(y)) +

∫
Y
v(y)dν(y)− ε

]
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v . We fix v and minimize over u.

This
yields :

u(x)
def.
= −ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)dν(y)

)
Plugging back in the dual :

Wε(µ, ν) = max
v∈C(Y)

∫
X
−ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)dν(y)

)
dµ(y)

+

∫
Y
v(y)dν(y)− ε

= max
v∈C(Y)

Eµ
[
− ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)

)
+

∫
Y
v(y)dν(y)− ε

]
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We consider 2 frameworks :
Semi-Discrete : µ is continuous and ν =

∑M
j=1 νiδyj The optimization

problem is

max
v∈RM

Eµ

[
− ε log

 M∑
j=1

exp(
v(yj)− c(x , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]

Discrete : µ =
∑N

i=1 µiδxi and ν =
∑M

j=1 νiδyj The optimization
problem is

max
v∈RM

N∑
i=1

[
− ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]
µi
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Stochastic Optimization

Computing the full gradient is
Hard in the semi-discrete setting (even impossible if we don’t know µ
explicitly)

Very costly in the discrete case since we need to compute N gradients
and sum them.

The idea of stochastic optimization is to use approximate gradients so that
each iteration is inexpensive.
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Stochastic Optimization I

Goal : maximize Hε(v) = Eµ [hε(X , v)] over v in RM .

Standard gradient ascent :

v (k) = v (k−1) +∇vHε(v
(k−1))

The whole gradient ∇vHε(v) is too costly/complicated to compute

Idea : Sample x from µ and use ∇vhε(x , v) as a proxy for the full
gradient in the gradient ascent.
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Stochastic Optimization II

Algorithm 1 Averaged SGD
Input: C
Output: v
v ← 0M , v̄ ← v
for k = 1, 2, . . . do

Sample xk from µ
v ← v + C√

k
∇vhε(xk , v) (gradient ascent step)

v̄ ← 1
k v + k−1

k v̄ (averaging)
end for

cost of each iteration M

convergence rate O(1/
√

(k))
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Stochastic Optiization : Case of a Finite Sum I

In the specific case where µ is also a discrete measure, we are minimizing a
finite sum of N functionals :

max
v∈RM

N∑
i=1

[
− ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]
µi

A more efficient algorithm consists in using an average of the past gradients
as a proxy for the full gradient :

At iteration k , an index i is drawn. Its gradient ∇vhε(xi , v
(k)) is

updated in the vector of partial gradients (vector with N entries kept in
memory).

The average gradient is updated accordingly, and used in a step of the
gradient ascent
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Stochastic Optiization : Case of a Finite Sum II

Algorithm 2 SAG for Discrete OT
Input: C
Output: v

v← 0M , d← 0J , ∀i , gi ← 0M

for k = 1, 2, . . . do
Sample i ∈ {1, 2, . . . , I} uniform.
d← d− gi

gi ← µi∇v h̄ε(xi , v)
d← d + gi ; v← v + Cd

end for

cost of each iteration M

convergence rate O(1/k)
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Numerical Results for Word Mover’s Distance (Discrete OT)

Figure 1: Results for the computation of 595 pairwise word mover’s distances
between 35 very large corpora of text, each represented as a cloud of I = 20, 000
word embeddings.
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Numerical Results for Density Fitting (Semi-discrete OT)
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(a) SGD (b) SGD vs. SAG

Figure 2: (a) Plot of ‖vk − v?0‖2 / ‖v?0‖2 as a function of k , for SGD and different
values of ε (ε = 0 being un-regularized). (b) Plot of ‖vk − v?ε‖2 / ‖v?ε‖2 averaged
over 40 runs as a function of k , for SGD and SAG with different number N of
samples, for regularized OT using ε = 10−2.
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Dual Formulation as an Expectation

Recall the dual objective function to be maximized, for ε > 0

Fε(u, v) =

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

−ε
∫
X×Y

exp(
u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)

Let X ∼ µ and Y ∼ ν be two independent random variables, we get

Fε(u, v) = Eµ⊗ν [fε(X ,Y , u, v)]

where ∀ε > 0,

fε(x , y , u, v)
def.
= u(x) + v(y)− ε exp

(u(x) + v(y)− c(x , y)

ε

)
.
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Reminder on RKHS I

We consider two reproducing kernel Hilbert spaces (RKHS) H and G on X
and on Y, with kernels κ and `.

Properties of RKHS
(a) if u ∈ H, then u(x) = 〈u, κ(·, x)〉H
(b) κ(x , x ′) = 〈κ(·, x), κ(·, x ′)〉H.

The Gaussian Kernel

For the Gaussian Kernel i.e. κ(x , x ′) = exp(‖x−x
′‖2

2σ2 ) the associated RKHS is
dense in the space of continuous functions. This means that any continuous
function can be approximated by a linear combination of Gaussian Kernels.
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Reminder on RKHS II

Figure 3: Approximation of a function by a sum of gaussian kernels. The choice of
the bandwidth is crucial.
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Continuous OT I

fε(x , y , u, v)
def.
= u(x) + v(y)− ε exp

(u(x) + v(y)− c(x , y)

ε

)
.

Rewriting u(x) and v(y) as scalar products in H and G we get

fε(x , y , u, v)
def.
= 〈u, κ(·, x)〉H + 〈v , `(·, y)〉G
−ε exp

(〈u, κ(·, x)〉H + 〈v , `(·, y)〉G − c(x , y)

ε

)
.

we can apply the SGD algorithm in the RKHS :

(uk , vk)
def.
= (uk−1, vk−1) +

C√
k
∇fε(xk , yk , uk−1, vk−1) ∈ H × G, (1)

where (xk , yk) are i.i.d. samples from µ⊗ ν.
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Continuous OT II

Algorithm 3 Kernel SGD for continuous OT

Input: C , kernels κ and `
Output: (αk , xk , yk)k=1,...

for k = 1, 2, . . . do
Sample xk from µ
Sample yk from ν

uk−1(xk)
def.
=
∑k−1

i=1 αiκ(xk , xi )

vk−1(yk)
def.
=
∑k−1

i=1 αi`(yk , yi )

αk
def.
= C√

k

(
1− e

uk−1(xk )+vk−1(yk )−c(xk ,yk )

ε

)
end for
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Continuous OT III

Proposition : Convergence of SGD in the RKHS
The iterates (uk , vk) defined in (1) satisfy

(uk , vk)
def.
=

k∑
i=1

αi (κ(·, xi ), `(·, yi )) (2)

where αi
def.
= ΠBr

(
C√
i

(
1− e

ui−1(xi )+vi−1(yi )−c(xi ,yi )

ε

))
, (3)

where (xi , yi )i=1...k are i.i.d samples from µ⊗ ν and ΠBr is the projection on
the centered ball of radius r . If the solutions of (Dε) are in H× G and if r
is large enough, the iterates (uk ,vk) converge to a solution of (Dε).
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Continuous OT : Numerical Results
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Figure 4: (a) Plot of dµ
dx (blue) and dν

dx (green). (b) Plot of ‖uk − û?‖2 / ‖û?‖2 as
a function of k with SGD in the RKHS, for regularized OT using ε = 10−1. (c)
Plot of the iterates uk for k = 103, 104, 105 and the proxy for the true potential û?,
evaluated on a grid where µ has non negligible mass.
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Conclusion

Dual formulations of OT can be rewritten as expectation maximization
problems
This allows the use of stochastic optimization methods
Surpass Sinkhorn in the discrete setting (online method more efficient
than batch)
Tackle semi-discrete and continuous problems without requiring
discretization
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