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Recurrent issue in ML : Comparing probability distributions

Figure 1: Many objects can be viewed as probability distributions (courtesy of M.
Cuturi)
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Optimal Transport and the Wasserstein Distance

Optimal Transport : find coupling that minimizes total cost of moving
µ to ν whith unit cost function c
Constrained problem : coupling has fixed marginals
Minimal cost of moving µ to ν(e.g. solution of the OT problem) is
called the Wasserstein distance (it’s an actual distance!)
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OT for ML problems

Figure 2: OT gives a natural framework for distances between probability
distributions that takes geometry into account (courtesy of M. Cuturi)
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Optimal Transport

Two positive Radon measures µ on X and ν on Y of mass 1
Cost c(x , y) to move a unit of mass from x to y
Set of couplings with marginals µ and ν
Π(µ, ν)

def.
= {π ∈M1

+(X × Y) | π(A× Y) = µ(A), π(X × B) = ν(B)}

What’s the coupling that minimizes the total cost?
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Kantorovitch Formulation of OT

The optimal overall cost for transporting µ to ν is given by

W (µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y)

+ εKL(π|µ⊗ ν)

(Pε)

where

KL(π|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dπ
dµdν

(x , y)
)
− 1
)
dπ(x , y)
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Entropy!

Basically : Adding an entropic regularization smoothes the constraint
Makes the problem easier :

I yields an unconstrained dual problem
I discrete case can be solved efficiently with alternate maximizations on

the dual variables : Sinkhorn’s algorithm (more on that later)

For ML applications, regularized Wasserstein is better than standard one
In high dimension, helps avoiding overfitting
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Reminder on convex duality

Primal problem:

minx f (x)

subject to hi (x) = 0 for i = 1. . . m

Lagrange dual function:

g(λ) = min
x

f (x) +
m∑
i=1

λihi (x)

Dual problem:
max
λ

g(λ)

Under good assumptions, both problems are equivalent.
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Dual formulation of OT

W (µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιUc (u, v) (Dε)

where the constraint set Uc is defined by

Uc
def.
= {(u, v) ∈ C(X )× C(Y) ; ∀(x , y) ∈ X × Y, u(x) + v(y) ≤ c(x , y)}
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Dual formulation of OT (with entropy)

Wε(µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιεUc

(u, v)

and the smoothed indicator is

ιεUc
(u, v)

def.
= ε

∫
X×Y

exp(
u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)
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Semi-Dual formulation of OT

The dual problem is convex in u and v . We fix v and minimize over u.

This
yields :

u(x)
def.
= min

y∈Y
c(x , y)− v(y)

Plugging back in the dual :

Wε(µ, ν) = max
v∈C(Y)

∫
X
min
y∈Y

(c(x , y)− v(y)) dµ(x) +

∫
Y
v(y)dν(y)− ε

= max
v∈C(Y)

Eµ
[
min
y∈Y

(c(x , y)− v(y)) +

∫
Y
v(y)dν(y)− ε

]
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v . We fix v and minimize over u.

This
yields :

u(x)
def.
= −ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)dν(y)

)
Plugging back in the dual :

Wε(µ, ν) = max
v∈C(Y)

∫
X
−ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)dν(y)

)
dµ(y)

+

∫
Y
v(y)dν(y)− ε

= max
v∈C(Y)

Eµ
[
− ε log

(∫
Y
exp(

v(y)− c(x , y)

ε
)

)
+

∫
Y
v(y)dν(y)− ε

]
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We consider 2 frameworks :
Semi-Discrete : µ is continuous and ν =

∑M
j=1 νiδyj The optimization

problem is

max
v∈RM

Eµ

[
− ε log

 M∑
j=1

exp(
v(yj)− c(x , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]

Discrete : µ =
∑N

i=1 µiδxi and ν =
∑M

j=1 νiδyj The optimization
problem is

max
v∈RM

N∑
i=1

[
− ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]
µi
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Stochastic Optimization

Computing the full gradient is
Hard in the semi-discrete setting (even impossible if we don’t know µ
explicitly)

Very costly in the discrete case since we need to compute N gradients
and sum them.

The idea of stochastic optimization is to use approximate gradients so that
each iteration is inexpensive.
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Stochastic Optimization I

Goal : maximize Hε(v) = Eµ [hε(X , v)] over v in RM .

Standard gradient ascent :

v (k) = v (k−1) +∇vHε(v
(k−1))

The whole gradient ∇vHε(v) is too costly/complicated to compute

Idea : Sample x from µ and use ∇vhε(x , v) as a proxy for the full
gradient in the gradient ascent.
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Stochastic Optimization II

Algorithm 1 Averaged SGD
Input: C
Output: v
v ← 0M , v̄ ← v
for k = 1, 2, . . . do

Sample xk from µ
v ← v + C√

k
∇vhε(xk , v) (gradient ascent step)

v̄ ← 1
k v + k−1

k v̄ (averaging)
end for

cost of each iteration M

convergence rate O(1/
√

(k))
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Discrete OT : Sinkhorn’s Algorithm I

State-of-the-art : Sinkhorn’s Algorithm
Two equivalent views

I Alternate projections on the constraints of the primal
I Alternate minimizations on the dual

Iterates a def.
= exp(uε ) and b

def.
= exp( vε ) :

{
a = 1

K(b�ν)

b = 1
KT (a�µ)

where K
def.
= exp −c

ε and � is coordinatewise vector multiplication.

Linear convergence of the iterates to the optimizers
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Discrete OT : Sinkhorn’s Algorithm II

Algorithm 2 Sinkhorn
Output: v

b← 1J

for k = 1, 2, . . . do
a← 1I

K(ν�b)

b← 1J

K>(µ�a)

end for
v← ε log(b)

⇒ Implies matrix vector multiplications at each iteration : cost I × J per
iteration
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Stochastic Optimization : Case of a Finite Sum I

When µ is also a discrete measure, we are minimizing a finite sum of N
functionals :

max
v∈RM

N∑
i=1

[
− ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j − ε
]
µi
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Stochastic Optimization : Case of a Finite Sum II

A more efficient stochastic algorithm consists in using an average of the past
gradients as a proxy for the full gradient :

At iteration k , an index i is drawn. Its gradient ∇vhε(xi , v
(k)) is

updated in the vector of partial gradients (vector with N entries kept in
memory).

The average gradient is updated accordingly, and used in a step of the
gradient ascent
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Stochastic Optimization : Case of a Finite Sum III

Algorithm 3 SAG for Discrete OT
Input: C
Output: v

v← 0M , d← 0J , ∀i , gi ← 0M

for k = 1, 2, . . . do
Sample i ∈ {1, 2, . . . , I} uniform.
d← d− gi

gi ← µi∇v h̄ε(xi , v)
d← d + gi ; v← v + Cd

end for

cost of each iteration M

convergence rate O(1/k)
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Stochastic Optimization : Case of a Finite Sum IV

⇒ Slower convergence rate than Sinkhorn but online algorithm, better for
(very) large-scale problems
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Numerical Results for Word Mover’s Distance (Discrete OT)

Figure 3: Results for the computation of 595 pairwise word mover’s distances
between 35 very large corpora of text, each represented as a cloud of I = 20, 000
word embeddings.
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Numerical Results for Density Fitting (Semi-discrete OT)

100 101 102 103 104 105

10−3

10−2

10−1

100

ε = 0
ε = 0.1
ε = 0.01
ε = 0.001
ε = 0.0001

100 101 102 103 104 105

10−2

10−1

100

SGD
SAG, N = 100
SAG, N = 1000
SAG, N = 10000

(a) SGD (b) SGD vs. SAG
Figure 4: (a) Plot of ‖vk − v?0‖2 / ‖v?0‖2 as a function of k , for SGD and different
values of ε (ε = 0 being un-regularized). (b) Plot of ‖vk − v?ε‖2 / ‖v?ε‖2 averaged
over 40 runs as a function of k , for SGD and SAG with different number N of
samples, for regularized OT using ε = 10−2.
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Density Fitting

Observed dataset (y1, . . . , yn) ∈ X (IID assumption)
Empirical measure ν̂ = 1

n

∑n
i=1 δyi

Parametric model (µθ)θ∈Θ

Goal : find θ̂ = argminθ∈Θ L(µθ, ν̂) where L is a loss on measures.
If we assume (µθ) has density (fθ)θ∈Θ problem is solved with
Maximum Likelikood Estimator

θ̂
def.
= argmin

θ∈Θ
−

n∑
i=1

log f (yi | θ)
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Generative Models

Figure 5: Illustration of Density Fitting on a Generative Model
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Density Fitting for Generative Models I

Parametric model : µθ = gθ]ζ

ζ reference measure on (low dimensional) latent space Z
gθ : Z → X from latent space to data space

Sampling procedure : x ∼ µθ obtained by x = gθ(z) were z ∼ ζ
Very popular topic in ML : image generation
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Density Fitting for Generative Models II

Generative Models usually supported on low dimensional manifolds
(dim Z < dim X )
µθ doesn’t have density wrt Lebesgue measure

⇒ MLE can’t be applied in this context!

2 natural candidates emerge for L
I Maximum Mean Discrepency (based on Reproducing Kernel Hilbert

Spaces) → Hilbertian norm
I The Wasserstein Distance (based on Optimal Transport) →

Non-Hilbertian distance
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Density Fitting with Sinkhorn loss "Formally"

Define the Sinkhorn loss between two measures µ, ν as:

W̄c,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν)

Solve minθ E (θ)

where E (θ)
def.
= W̄c,ε(µθ, ν)

⇒ Issue : untractable gradient
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Approximating Sinkhorn loss

Rather than approximating the gradient approximate the loss itself

Minibatches : Ê (θ)
I sample x1, . . . , xm from µθ
I use empirical Wasserstein distance Wc,ε(µ̂θ, ν̂) where µ̂θ = 1

N

∑m
i=1 δxi

Use L iterations of Sinkhorn’s algorithm : Ê (L)(θ)
I compute L steps of the algorithm
I use this as a proxy for W (µ̂θ, ν)
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Computing the Gradient in Practice
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Figure 6: Scheme of the loss approximation

Compute exact gradient of Ê (L)(θ) with autodiff
Backpropagation through above graph
Same computational cost as evaluation of Ê (L)(θ)
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Numerical Results : a toy example

(a) MMD (b) ε = 1 (c) ε = 0.1 (d) ε = 0.01

Figure 7: Ellipses after convergence of the stochastic gradient descent with L = 20,
m = 200
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Numerical Results on MNIST (L2 cost)

Figure 8: Samples from MNIST dataset
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Numerical Results on MNIST (L2 cost)

Figure 9: Manifolds in the latent space for various parameters
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Learning the cost [Li et al. ’17, Bellemare et al. ’17]

On complex data sets, choice of a good ground metric c is not trivial
Use parametric cost function cφ(x , y) = ‖fφ(x)− fφ(y)‖22
(where fφ : X → Rd )
Optimization problem becomes minmax (like GANs)

minθmaxφW̄cφ,ε(µθ, ν)

Same approximations but alternate between updating the cost
parameters φ and the measure parameters θ
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Numerical Results on CIFAR (learning the cost)

Figure 10: Samples from CIFAR dataset
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Numerical Results on CIFAR (learning the cost)

(a) MMD (b) ε = 1000 (c) ε = 10

Figure 11: Samples from the generator trained on CIFAR 10 for MMD and
Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but more about
capturing a high dimensional distribution... Hard to evaluate.
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