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Comparing High Dimensional Cloud Points

• Document di = histogram of words
• Word wk = point in Rd for a certain embedding (usually learnt
with neural networks, e.g. Word2Vec)

• Document ∼ weighted cloud of points in Rd ⇒
di ∼ µi =

∑
αk,iδwk

• Distance between 2 documents d1, d2 is the optimal transport
distance between the associated point clouds µ1, µ2.



Fitting data to a probabilistic model

Figure 1: Data points in 2D



Recurrent issue in ML : Fitting data to a
probabilistic model

Figure 2: Gaussian Mixture Model



Density Fitting with MLE

• Observed dataset (y1, . . . , yn) ∈ X (IID assumption)
• Empirical measure ν̂ = 1

n

∑n
i=1 δyi

• Parametric model (µθ)θ∈Θ measure with density (fθ)θ∈Θ

• Goal : find θ̂ = arg minθ∈Θ L(µθ, ν̂) where L is a loss on
measures.

• Maximum Likelikood Estimator

θ̂
def.
= arg min

θ∈Θ
−

n∑
i=1

log f (yi | θ)



Generative Models

Figure 3: Illustration of Density Fitting on a Generative Model



Density Fitting for Generative Models I
Very popular topic in ML : image generation

• Parametric model : µθ = gθ]ζ

• ζ reference measure on (low dimensional) latent space Z
• gθ : Z → X from latent space to data space
• Sampling procedure : x ∼ µθ obtained by x = gθ(z) were z ∼ ζ

• dim Z < <dim X ⇒ µθ doesn’t have density wrt Lebesgue
measure

⇒ MLE can’t be applied in this context!



Optimal Transport I

• Optimal Transport : find coupling that minimizes total cost of
moving µ to ν whith unit cost function c

• Constrained problem : coupling has fixed marginals
• Minimal cost of moving µ to ν(e.g. solution of the OT problem)
is called the Wasserstein distance (it’s an actual distance!)



Optimal Transport II
Cost c(x , y) to move a unit of mass from x to y
Constrained set of couplings Π(µ, ν) with marginals µ and ν

W (µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y)

What’s the coupling that minimizes the total cost?



Kantorovitch Formulation of OT

The optimal overall cost for transporting µ to ν is given by

W (µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y)

+ εKL(π|µ⊗ ν)

(Pε)

where

KL(π|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dπ
dµdν

(x , y)
)
− 1
)
dπ(x , y)

Adding an entropic regularization smoothes the constraint. In
particular it yields an unconstrained dual problem.
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Dual formulation of OT

W (µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)(u, v)

(Dε)
under the constraint that

∀(x , y) ∈ X × Y, u(x) + v(y) ≤ c(x , y)



Dual formulation of OT (with entropy)

Wε(µ, ν) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dµ(x)+

∫
Y
v(y)dν(y)−ιεUc

(u, v)

and the smoothed indicator is

ιεUc
(u, v)

def.
= ε

∫
X×Y

exp(
u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)



Semi-Dual formulation of OT (with
entropy)

The dual problem is convex in u and v . We fix v and minimize over
u.

This yields :

u(x)
def.
= −ε log

(∫
Y

exp(
v(y)− c(x , y)

ε
)dν(y)

)
Plugging back in the dual :

Wε(µ, ν) = max
v∈C(Y)

∫
X
−ε log

(∫
Y

exp(
v(y)− c(x , y)

ε
)dν(y)

)
dµ(y)

+

∫
Y
v(y)dν(y)− ε

= max
v∈C(Y)

Eµ
[
− ε log

(∫
Y

exp(
v(y)− c(x , y)

ε
)

)
+

∫
Y
v(y)dν(y)− ε

]
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We consider 2 frameworks :
• Semi-Discrete : µ is continuous and ν =

∑M
j=1 νiδyj The

optimization problem is

max
v∈RM

Eµ

[
−ε log

 M∑
j=1

exp(
v(yj)− c(x , yj)

ε
)

+
M∑
j=1

v(yj)ν j−ε
]

• Discrete : µ =
∑N

i=1 µiδxi and ν =
∑M

j=1 νiδyj The
optimization problem is

max
v∈RM

N∑
i=1

[
−ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j−ε
]
µi
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Stochastic Optimization

Computing the full gradient is
• Hard in the semi-discrete setting (even impossible if we don’t
know µ explicitly)

• Very costly in the discrete case since we need to compute N
gradients and sum them.

The idea of stochastic optimization is to use approximate gradients
so that each iteration is inexpensive.
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Stochastic Optimization I

• Goal : maximize Hε(v) = Eµ [hε(X , v)] over v in RM .
• Standard gradient ascent :

v (k) = v (k−1) +∇vHε(v
(k−1))

• The whole gradient ∇vHε(v) is too costly/complicated to
compute

• Idea : Sample x from µ and use ∇vhε(x , v) as a proxy for the
full gradient in the gradient ascent.



Stochastic Optimization II

Algorithm 1 Averaged SGD
Input: C
Output: v
v ← 0M , v̄ ← v
for k = 1, 2, . . . do

Sample xk from µ
v ← v + C√

k
∇vhε(xk , v) (gradient ascent step)

v̄ ← 1
k v + k−1

k v̄ (averaging)
end for

• cost of each iteration M

• convergence rate O(1/
√

(k))



Stochastic Optimization : Case of a Finite
Sum I

In the specific case where µ is also a discrete measure, we are
minimizing a finite sum of N functionals :

max
v∈RM

N∑
i=1

[
−ε log

 M∑
j=1

exp(
v(yj)− c(xi , yj)

ε
)

+
M∑
j=1

v(yj)ν j−ε
]
µi

Variance reduction algorithms (e.g. SAGA) can be used to improve
speed of convergence:
• cost of each iteration M

• convergence rate O(1/k)



Numerical Results for Word Mover’s
Distance (Discrete OT)

Figure 4: Results for the computation of 595 pairwise word mover’s
distances between 35 very large corpora of text, each represented as a
cloud of I = 20, 000 word embeddings.



Numerical Results for Density Fitting
(Semi-discrete OT)
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Figure 5: (a) Effect of regularization parameter ε (b) Effect of sampling
(discrete algo) vs. using semi-discrete algo (blue)



Dual Formulation as an Expectation

Recall the dual objective function to be maximized, for ε > 0

Fε(u, v) =

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

−ε
∫
X×Y

exp(
u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)



Dual Formulation as an Expectation
Recall the dual objective function to be maximized, for ε > 0

Fε(u, v) =

∫
X
u(x)dµ(x) +

∫
Y
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u(x) + v(y)− c(x , y)

ε
)dµ(x)dν(y)

Let X ∼ µ and Y ∼ ν be two independent random variables, we get

Fε(u, v) = Eµ⊗ν [fε(X ,Y , u, v)]

where ∀ε > 0,

fε(x , y , u, v)
def.
= u(x) + v(y)− ε exp

(u(x) + v(y)− c(x , y)

ε

)
.



Reminder on RKHS I

We consider two reproducing kernel Hilbert spaces (RKHS) H and G
on X and on Y, with kernels κ and `.

Properties of RKHS

(a) if u ∈ H, then u(x) = 〈u, κ(·, x)〉H
(b) κ(x , x ′) = 〈κ(·, x), κ(·, x ′)〉H.

The Gaussian Kernel
For the Gaussian Kernel i.e. κ(x , x ′) = exp(‖x−x

′‖2
2σ2 ) the associated

RKHS is dense in the space of continuous functions. This means
that any continuous function can be approximated by a linear
combination of Gaussian Kernels.



Reminder on RKHS II

Figure 6: Approximation of a function by a sum of gaussian kernels. The
choice of the bandwidth is crucial.



Continuous OT I

fε(x , y , u, v)
def.
= u(x) + v(y)− ε exp

(u(x) + v(y)− c(x , y)

ε

)
.

Rewriting u(x) and v(y) as scalar products in H and G we get

fε(x , y , u, v)
def.
= 〈u, κ(·, x)〉H + 〈v , `(·, y)〉G
−ε exp

(〈u, κ(·, x)〉H + 〈v , `(·, y)〉G − c(x , y)

ε

)
.

we can apply the SGD algorithm in the RKHS :

(uk , vk)
def.
= (uk−1, vk−1) +

C√
k
∇fε(xk , yk , uk−1, vk−1) ∈ H × G,

(1)
where (xk , yk) are i.i.d. samples from µ⊗ ν.



Continuous OT : Numerical Results
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Figure 7: (a) Plot of dµ
dx (blue) and dν

dx (green). (b) Plot of
‖uk − û?‖2 / ‖û?‖2 as a function of k with SGD in the RKHS, for
regularized OT using ε = 10−1. (c) Plot of the iterates uk for
k = 103, 104, 105 and the proxy for the true potential û?, evaluated on a
grid where µ has non negligible mass.



Continuous OT : Theory in progress

We recently proved that the dual potentials are in a Sobolev ball
(and thus bounded in a certain RKHS)

• We get convergence of kernel SGD in the continuous setting
• We can use standard results on RKHS to prove regularized OT
has sample complexity in O(n−1/2), similar to MMD / much
better than standard OT



Conclusion

• Dual formulations of OT can be rewritten as expectation
maximization problems

• This allows the use of stochastic optimization methods
• Surpass Sinkhorn in the discrete setting (online method more
efficient than batch)

• Tackle semi-discrete and continuous problems without requiring
discretization


