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Comparing High Dimensional Cloud Points
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word2vec embedding

Document d; = histogram of words

Word wy = point in RY for a certain embedding (usually learnt
with neural networks, e.g. Word2Vec)

Document ~ weighted cloud of points in RY =

di ~ pi =Y g ibuy

Distance between 2 documents dy, d> is the optimal transport
distance between the associated point clouds p1, 2.



Fitting data to a probabilistic model

Figure 1: Data points in 2D



Recurrent issue in ML : Fitting data to a
probabilistic model

10
L

Figure 2: Gaussian Mixture Model



Density Fitting with MLE

Observed dataset (yi,...,y,) € X (IID assumption)
Empirical measure 7 = 15°7 5,
Parametric model (119)pco measure with density (fy)gco

Goal : find = arg minycg L(119, 7) where L is a loss on
measures.

Maximum Likelikood Estimator

n
0 < arg min — Z log f(yi | 0)
bco =



Generative Models
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Figure 3: Illustration of Density Fitting on a Generative Model



Density Fitting for Generative Models |

Very popular topic in ML : image generation

S0/

Parametric model : 119 = gpsC

¢ reference measure on (low dimensional) latent space Z

gy - Z — X from latent space to data space

Sampling procedure : x ~ iy obtained by x = gy(z) were z ~ ¢

dim Z < <dim X = pug doesn’t have density wrt Lebesgue
measure

= MLE can’t be applied in this context!



Optimal Transport |
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e Optimal Transport : find coupling that minimizes total cost of
moving u to v whith unit cost function c

e Constrained problem : coupling has fixed marginals

e Minimal cost of moving 1 to v(e.g. solution of the OT problem)
is called the Wasserstein distance (it's an actual distance!)



Optimal Transport |l

Cost ¢(x, y) to move a unit of mass from x to y
Constrained set of couplings MN(x, ) with marginals x and v

W(u, )= min / e, y)dn(x,y)
meN(p,v) Jarxy

What's the coupling that minimizes the total cost?
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Kantorovitch Formulation of OT

The optimal overall cost for transporting 1 to v is given by

W(u,v) = min / c(x,y)dr(x,y)
meN(ur) Jxxy



Kantorovitch Formulation of OT

The optimal overall cost for transporting 1 to v is given by

We(v)= min / c(x, y)dn(x,y) + eKL(nlu® 1) (P.)
reM(w,v) Jxxy

where

def.

KL(m|lp®@v) = /Xxy (log (djzy(x,y)) — 1)dn(x,y)



Kantorovitch Formulation of OT

The optimal overall cost for transporting 1 to v is given by

We(v)= min / c(x, y)dn(x,y) + eKL(nlu® 1) (P.)
reM(w,v) Jxxy

where
def.

KL(m|lp®@v) = /Xxy (log (djzy(x,y)) — 1)dn(x,y)

Adding an entropic regularization smoothes the constraint. In
particular it yields an unconstrained dual problem.



Dual formulation of OT

W) = max a0 + /y Wy )d(y)(u, v)

ueC(X),veC(y)
(De)
under the constraint that

V(x,y) € X x Y, u(x) + v(y) < c(x,y)



Dual formulation of OT (with entropy)

W)= max [ uGodnto+ /y Wy )dv(y) =5, (u,v)

and the smoothed indicator is

) e [ ep( I a0 (y)



Semi-Dual formulation of OT (with
entropy)

The dual problem is convex in v and v. We fix v and minimize over
u.



Semi-Dual formulation of OT (with
entropy)

The dual problem is convex in v and v. We fix v and minimize over
u. This yields :

() = o / e 20
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Semi-Dual formulation of OT (with
entropy)

The dual problem is convex in v and v. We fix v and minimize over
u. This yields :

() = o / e 20

€
Plugging back in the dual :

W) = mos | —etog / e "= ) ) duty)

veC(y) g

- /y v(y)du(y) — ¢
=  max EM[—Elog </yexp(v(y)c(x,y))>

veC(Y) 15

+ /y V(y)du(y) — €]



We consider 2 frameworks :

e Semi-Discrete : p is continuous and v = ZAi

im1 vidy; The
optimization problem is

M

M
v(y) — c(x. ) (X yj)
max —¢elo g ex —i—E v i—€
VERM g€ p - yj



We consider 2 frameworks :

e Semi-Discrete : p is continuous and v = ZJAi
optimization problem is

M
v(y) — c(x. ) (X yj)
max —¢elo g ex —i—E v i—€
vERM [ g€ p - yj

1 vidy; The

o Discrete : =S, ui0x; and v = Zjl\il vioy; The
optimization problem is

N

M M
v(yj) — XnyJ
max —¢lo g ex + E v V;—E
veRM ‘= [ & ._ p( = yJ /




Stochastic Optimization

Computing the full gradient is

e Hard in the semi-discrete setting (even impossible if we don't
know 1 explicitly)



Stochastic Optimization

Computing the full gradient is
e Hard in the semi-discrete setting (even impossible if we don't
know 1 explicitly)
e Very costly in the discrete case since we need to compute N
gradients and sum them.
The idea of stochastic optimization is to use approximate gradients
so that each iteration is inexpensive.



Stochastic Optimization |

Goal : maximize H.(v) = E,, [h=(X, v)] over v in RM.

Standard gradient ascent :

The whole gradient V, H.(v) is too costly/complicated to
compute

|dea : Sample x from 1 and use V, ho(x, v) as a proxy for the
full gradient in the gradient ascent.



Stochastic Optimization |l

Algorithm 1 Averaged SGD

Input: C
Output: v
v+ Oy, Vv
for k=1,2,... do
Sample x; from p
Ve v+ %Vvha(xk, v)  (gradient ascent step)
Vo %v + k—;lv (averaging)
end for

e cost of each iteration M
o convergence rate O(1/+/(k))



Stochastic Optimization : Case of a Finite
Sum |

In the specific case where 1 is also a discrete measure, we are
minimizing a finite sum of N functionals :

N M
c(x
max —clog g exp( V() ”yJ —i—E v(yj)vi—e| pi
J=1

veRM i—

Variance reduction algorithms (e.g. SAGA) can be used to improve
speed of convergence:

e cost of each iteration M

e convergence rate O(1/k)



Numerical Results for Word Mover's
Distance (Discrete OT)
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Figure 4: Results for the computation of 595 pairwise word mover's
distances between 35 very large corpora of text, each represented as a
cloud of | = 20,000 word embeddings.



Numerical Results for Density Fitting
(Semi-discrete OT)

— sGb
— SAG,N=100
— SAG,N=1000
— SAG, N = 10000

0
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Figure 5: (a) Effect of regularization parameter ¢ (b) Effect of sampling
(discrete algo) vs. using semi-discrete algo (blue)




Dual Formulation as an Expectation

Recall the dual objective function to be maximized, for ¢ > 0

F(uv) = /X u(x)du(x) + / V(y)di(y)

Yy
_5/ exp(u(X)+V(y)_c(x’y))du(x)du(y)
XxY

g



Dual Formulation as an Expectation
Recall the dual objective function to be maximized, for ¢ > 0

F(uv) = /X u(x)du(x) + / V(y)di(y)

y

e [ eI gauy)

Let X ~ p and Y ~ v be two independent random variables, we get

FE(U, V) - Eu@y [fE(Xa Ya u, V)]

where Ve > 0,

£(x,y, u,v) E u(x) + v(y) — cexp (U(X) + v(yg) — C(X,y)>'



Reminder on RKHS |

We consider two reproducing kernel Hilbert spaces (RKHS) H and G
on X and on Y, with kernels x and /.

Properties of RKHS

(a) if u € H, then u(x) = (u, k(-, x))n
(b) /ﬁ;(X,X/) - <H(-,X), H(‘7X/)>H-

The Gaussian Kernel

2 .
For the Gaussian Kernel i.e. k(x,x) = exp(%) the associated

RKHS is dense in the space of continuous functions. This means
that any continuous function can be approximated by a linear
combination of Gaussian Kernels.



Reminder on RKHS 1l
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Figure 6: Approximation of a function by a sum of gaussian kernels. The
choice of the bandwidth is crucial.



Continuous OT |

(x) +vly) - C(X,y)>_

£y, uv) 2 u(x) + vly) —cexp (5 -

Rewriting u(x) and v(y) as scalar products in  and G we get

fe(Xay7 u, V) = <u7 ’%(WX»'H + <V7£('7Y)>g
<u? H("X»H + (va('7y)>g _ C(XaY))‘

—eexp (

we can apply the SGD algorithm in the RKHS :

of. C
(Uk, vi) - (Uk—1, Vk—1) + ﬁVfa(XkJ/k, Uk—1,Vk—1) € H X G,
(1)

where (x, yx) are i.i.d. samples from p ® v.



Continuous OT : Numerical Results
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Figure 7: (a) Plot of i—ﬁ (blue) and ?TZ (green). (b) Plot of

lux — @], / ||0*||, as a function of k with SGD in the RKHS, for
regularized OT using e = 10~ 1. (c) Plot of the iterates uy for

k =103,10%,10° and the proxy for the true potential *, evaluated on a
grid where p has non negligible mass.



Continuous OT : Theory in progress

We recently proved that the dual potentials are in a Sobolev ball
(and thus bounded in a certain RKHS)

e We get convergence of kernel SGD in the continuous setting

e We can use standard results on RKHS to prove regularized OT

has sample complexity in O(n~1/2), similar to MMD / much
better than standard OT



Conclusion

Dual formulations of OT can be rewritten as expectation
maximization problems

This allows the use of stochastic optimization methods

Surpass Sinkhorn in the discrete setting (online method more
efficient than batch)

Tackle semi-discrete and continuous problems without requiring
discretization



