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Recurrent issue in ML : Fitting data to a
probabilistic model

Figure 1: Data points in 2D



Recurrent issue in ML : Fitting data to a
probabilistic model

Figure 2: Gaussian Mixture Model



Density Fitting with MLE

• Observed dataset (y1, . . . , yn) ∈ X (IID assumption)
• Empirical measure ν̂ = 1

n

∑n
i=1 δyi

• Parametric model (µθ)θ∈Θ measure with density (fθ)θ∈Θ

• Goal : find θ̂ = arg minθ∈Θ L(µθ, ν̂) where L is a loss on
measures.

• Maximum Likelikood Estimator

θ̂
def.
= arg min

θ∈Θ
−

n∑
i=1

log f (yi | θ)



Generative Models

Figure 3: Illustration of Density Fitting on a Generative Model



Density Fitting for Generative Models I

• Parametric model : µθ = gθ]ζ

• ζ reference measure on (low dimensional) latent space Z
• gθ : Z → X from latent space to data space
• Sampling procedure : x ∼ µθ obtained by x = gθ(z) were z ∼ ζ
• Very popular topic in ML : image generation



Density Fitting for Generative Models II

• Generative Models usually supported on low dimensional
manifolds (dim Z < dim X )

• µθ doesn’t have density wrt Lebesgue measure

⇒ MLE can’t be applied in this context!

• 2 natural candidates emerge for L
• Maximum Mean Discrepency (based on Reproducing Kernel

Hilbert Spaces) → Hilbertian norm
• The Wasserstein Distance (based on Optimal Transport) →

Non-Hilbertian distance



Maximum Mean Discrepency
Gretton et al. ’12

• Consider Reproducing Kernel Hilbert Space H with kernel k
• f ∈ H ⇒ f (x) = 〈f , k(·, x)〉H

MMDk(µ, ν) = sup
‖f ‖H≤1

Eµ[f (x)]− Eν [f (y)]

= Eµ⊗µ[k(x , x ′)] + Eν⊗ν [k(y , y ′)]

−2Eµ⊗ν [k(x , y)]

• Usual (positive definite) kernels
• Gaussian kernel : k(x , y) = exp(‖x−y‖

2

σ )
• Energy distance kernel : k(x , y) = d(x , 0) + d(y , 0)− d(x , y)



Optimal Transport I

• Optimal Transport : find coupling that minimizes total cost of
moving µ to ν whith unit cost function c

• Constrained problem : coupling has fixed marginals
• Minimal cost of moving µ to ν(e.g. solution of the OT problem)
is called the Wasserstein distance (it’s an actual distance!)



Optimal Transport II
Cost c(x , y) to move a unit of mass from x to y
Constrained set of couplings Π(µ, ν) with marginals µ and ν

W (µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y)

What’s the coupling that minimizes the total cost?



Optimal Transport III

Main issues of Wasserstein distance :

• Computationally Expensive : need to solve LP (in discrete case)

• Poor Sample Complexity : W (µ, µ̂n) ∼ n−
1
d

→ scales exponentially with dimension
→ need a lot of samples to get a good approximation of W



Entropy!

• Basically : Adding an entropic regularization smoothes the
constraint

• Makes the problem easier :
• yields an unconstrained dual problem
• discrete case can be solved efficiently with alternate

maximizations on the dual variables : Sinkhorn’s algorithm
(more on that later)

• For ML applications, regularized Wasserstein is better than
standard one

• In high dimension, helps avoiding overfitting



Entropic Relaxation of OT
Cuturi ’13

Add entropic Penalty to Kantorovitch formulation of OT

min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y) + εKL(π|µ⊗ ν) (Pε)

where

KL(π|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dπ
dµdν

(x , y)
)
− 1
)
dπ(x , y)

Regularized loss :

Wc,ε(µ, ν)
def.
=

∫
X×Y

c(x , y)dπε(x , y)

where πε solution of (Pε)



Sinkhorn Divergences : interpolation
between OT and MMD

Theorem
The Sinkhorn loss between two measures µ, ν is defined as:

W̄c,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν)

with the following limiting behavior in ε:
1 as ε→ 0, W̄c,ε(µ, ν)→ 2Wc(µ, ν)

2 as ε→ +∞, W̄c,ε(µ, ν)→ MMD−c(µ, ν)

Remark : Some conditions are required on c to get MMD distance
when ε→∞. In particular, c = ‖·‖p , 0 < p < 2 is valid.



Sample Complexity

Sample Complexity of OT and MMD

Let µ a probability distribution on Rd , and µ̂n an empirical measure
from µ

Wc(µ, µ̂n) = O(n−1/d)

MMD(µ, µ̂n) = O(n−1/2)

⇒ the number n of samples you need to get a precision η on the
Wassertein distance grows exponentially with the dimension d of the
space!



Sample Complexity - Sinkhorn loss

Sample Complexity of Sinkhorn loss seems to improve as ε grows.

Plots courtesy of G. Peyré and M. Cuturi



Sample Complexity - Sinkhorn loss

Sample Complexity of Sinkhorn loss (conjecture)

Let µ, ν two probability distributions on Rd , and µ̂n, ν̂n their
empirical measures

Wc,ε(µ̂n, ν̂n)−Wc,ε(µ, ν) = O(ε−d/2n−1/2)

⇒ The n−1/2 is obtained by proving that regularized potentials
belong to a RKHS (Sobolev space W 2

s with s > d
2 )

⇒ Dependence on ε has to be confirmed - currently working on
those bounds!



Density Fitting with Sinkhorn loss
"Formally"

Solve minθ E (θ)

where E (θ)
def.
= W̄c,ε(µθ, ν)

⇒ Issue : untractable gradient



Approximating Sinkhorn loss

• Rather than approximating the gradient approximate the loss
itself

• Minibatches : Ê (θ)
• sample x1, . . . , xm from µθ
• use empirical Sinkhorn loss W̄c,ε(µ̂θ, ν̂) where µ̂θ = 1

m

∑m
i=1 δxi

• Use L iterations of Sinkhorn’s algorithm : Ê (L)(θ)
• compute L steps of the algorithm
• use this as a proxy for W̄c,ε(µθ, ν)



Sinkhorn’s Algorithm

• State of the art solver for discrete regularized OT
• Two equivalent views

• Alternate projections on the constraints of the primal
• Alternate minimizations on the dual

• Iterates (a, b) :

{
a← 1

K(b�ν)

b ← 1
KT (a�µ)

where K
def.
= exp −c

ε and � is coordinatewise vector
multiplication.

• Primal solution πε = diag(a)Kdiag(b)

• Linear convergence of the iterates to the optimizers
• Number of iterations needed for convergence increases when ε
decreases



Computing the Gradient in Practice
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Figure 4: Scheme of the loss approximation

• Compute exact gradient of Ê (L)(θ) with autodiff
• Backpropagation through above graph
• Same computational cost as evaluation of Ê (L)(θ)



Numerical Results on MNIST (L2 cost)

Figure 5: Samples from MNIST dataset



Numerical Results on MNIST (L2 cost)

Figure 6: Fully connected NN with 2 hidden layers



Numerical Results on MNIST (L2 cost)

Figure 7: Manifolds in the latent space for various parameters



Learning the cost
Li et al. ’17, Bellemare et al. ’17

• On complex data sets, choice of a good ground metric c is not
trivial

• Use parametric cost function cφ(x , y) = ‖fφ(x)− fφ(y)‖22
(where fφ : X → Rd )

• Optimization problem becomes minmax (like GANs)

minθmaxφW̄cφ,ε(µθ, ν)

• Same approximations but alternate between updating the cost
parameters φ and the measure parameters θ



Numerical Results on CIFAR
(learning the cost)

Figure 8: Samples from CIFAR dataset



Numerical Results on CIFAR
(learning the cost)

Figure 9: Fully connected NN with 2 hidden layers



Numerical Results on CIFAR
(learning the cost)

(a) MMD (b) ε = 1000 (c) ε = 10

Figure 10: Samples from the generator trained on CIFAR 10 for MMD and
Sinkhorn loss (coming from the same samples in the latent space)



Numerical Results on CIFAR
(learning the cost)

Which image set is better? Not just about generating nice images,
but more about capturing a high dimensional distribution...

→ Hard to evaluate.

MMD ε = 100 ε = 10 ε = 1
4.56± 0.07 4.81± 0.05 4.79± 0.13 4.43± 0.07

Table 1: Inception Scores



Conclusion

• Take Home message : Sinkhorn Divergences allow to
interpolate between OT and MMD

• Future Work : Theory of Sinkhorn Divergences (positivity /
sample complexity)


