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Recurrent issue in ML : Fitting data to a
probabilistic model

-10 -5 o 5 10

Figure 1: Data points in 2D



Recurrent issue in ML : Fitting data to a
probabilistic model

Figure 2: Gaussian Mixture Model



Density Fitting with MLE

Observed dataset (yi,...,y,) € X (IID assumption)
Empirical measure 7 = 15°7 5,
Parametric model (119)pco measure with density (fy)gco

Goal : find = arg minycg L(119, 7) where L is a loss on
measures.

Maximum Likelikood Estimator

n
0 < arg min — Z log f(yi | 0)
bco =



Generative Models
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Figure 3: lllustration of Density Fitting on a Generative Model



Density Fitting for Generative Models |

Parametric model : s = gp:C

¢ reference measure on (low dimensional) latent space Z

gy : Z — X from latent space to data space

Sampling procedure : x ~ iy obtained by x = gy(z) were z ~ ¢

Very popular topic in ML : image generation
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Density Fitting for Generative Models ||

e Generative Models usually supported on low dimensional
manifolds (dim Z < dim X)

e 119 doesn't have density wrt Lebesgue measure

= MLE can’t be applied in this context!

e 2 natural candidates emerge for £
e Maximum Mean Discrepency (based on Reproducing Kernel
Hilbert Spaces) — Hilbertian norm
e The Wasserstein Distance (based on Optimal Transport) —
Non-Hilbertian distance



Maximum Mean Discrepency
Gretton et al. '12

e Consider Reproducing Kernel Hilbert Space H with kernel k
o feH = f(x)=(f,k(:,x))n

MMDy(p,v) = Hleu;ilEu[f(X)]—Eu[f(Y)]

= Eueulk(x,x")] + Evaulk(y, y")]
_2EM®I/[k(X’ )/)]

e Usual (positive definite) kernels

e Gaussian kernel : k(x,y) = exp(M)
e Energy distance kernel : k(x,y) = d(x,0) + d(y,0) — d(x,y)



Optimal Transport |

discrete | NN
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e Optimal Transport : find coupling that minimizes total cost of
moving u to v whith unit cost function c

e Constrained problem : coupling has fixed marginals

e Minimal cost of moving 1 to v(e.g. solution of the OT problem)
is called the Wasserstein distance (it's an actual distance!)



Optimal Transport |l

Cost ¢(x, y) to move a unit of mass from x to y
Constrained set of couplings MN(x, ) with marginals x and v

W(u, )= min / e, y)dn(x,y)
meN(p,v) Jarxy

What's the coupling that minimizes the total cost?
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Optimal Transport Ill

Main issues of Wasserstein distance :
e Computationally Expensive : need to solve LP (in discrete case)
e Poor Sample Complexity : W(u, fin) ~ n=d

— scales exponentially with dimension
— need a lot of samples to get a good approximation of W



Entropy!

Basically : Adding an entropic regularization smoothes the
constraint
Makes the problem easier :
e yields an unconstrained dual problem
e discrete case can be solved efficiently with alternate
maximizations on the dual variables : Sinkhorn's algorithm
(more on that later)
For ML applications, regularized Wasserstein is better than
standard one

In high dimension, helps avoiding overfitting



Entropic Relaxation of OT
Cuturi '13

Add entropic Penalty to Kantorovitch formulation of OT

min / c(x,y)dm(x,y) + eKL(m|lp®v)  (P:)
m€N(u,v) Jxxy

where

dm
KL(7|p ® v déf'/ log x,y)) — L)dn(x,y
(rln o) [ (o8 (i () ~1)dn(x.)
Regularized loss :
Weelpr) ™ [ el y)dma(x.y)
XxY

where 7. solution of (P;)



Sinkhorn Divergences : interpolation
between OT and MMD

Theorem

The Sinkhorn loss between two measures i, v is defined as:

Wc,s(ﬂa ’/) = 2Wc,s(ﬂ; V) - WC,&‘(,“’; ﬂ) - Wc,e(Vy V)

with the following limiting behavior in e:

@®asc— 0, Wco(p,v)— 2We(p,v)
@ asc — +oo, We(p,v) = MMD_c(,v)

Remark : Some conditions are required on ¢ to get MMD distance
when € — co. In particular, ¢ = ||-||,,0 < p < 2 is valid.



Sample Complexity

Sample Complexity of OT and MMD

Let 1 a probability distribution on RY, and /i,, an empirical measure
from p

WC(,U:/ALn) = O(n_l/d)
MMD(i,fin) = O(nY?)

= the number n of samples you need to get a precision 7 on the
Wassertein distance grows exponentially with the dimension d of the
spacel!



Sample Complexity - Sinkhorn loss

1 15 2 25 3 1 15 2 25 3

Energy distance ||-|| g1 Ws

Sample Complexity of Sinkhorn loss seems to improve as & grows.

Plots courtesy of G. Peyré and M. Cuturi



Sample Complexity - Sinkhorn loss

Sample Complexity of Sinkhorn loss (conjecture)

Let 41, v two probability distributions on R, and fi,, ¥, their
empirical measures

WC75(/:\L”’ D”) - WC,E(H, l/) = O(g_d/zn_l/2)

= The n~/2 is obtained by proving that regularized potentials
belong to a RKHS (Sobolev space W2 with s > %)

= Dependence on ¢ has to be confirmed - currently working on
those bounds!



Density Fitting with Sinkhorn loss
"Formally"

Solve ming E(6)

where E(0) = We.c (11, v)

= Issue : untractable gradient



Approximating Sinkhorn loss

e Rather than approximating the gradient approximate the loss
itself

e Minibatches : E(6)
e sample x1,..., X, from pg
o use empirical Sinkhorn loss W, .(fig, 7) where fig = L 3" 6,

o Use L iterations of Sinkhorn's algorithm : £(1)(8)

e compute L steps of the algorithm
e use this as a proxy for W, .(ug, )



Sinkhorn's Algorithm

State of the art solver for discrete regularized OT
Two equivalent views

o Alternate projections on the constraints of the primal
e Alternate minimizations on the dual

1
4 < Kbow)
__1
b wrean
def. — . . .
where K = exp —¢ and © is coordinatewise vector
multiplication.

Iterates (a, b) :

Primal solution 7. = diag(a)Kdiag(b)
Linear convergence of the iterates to the optimizers

Number of iterations needed for convergence increases when ¢
decreases



Computing the Gradient in Practice
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Figure 4: Scheme of the loss approximation

o Compute exact gradient of E(D(#) with autodiff
e Backpropagation through above graph

e Same computational cost as evaluation of £(1)(9)



Numerical Results on MNIST (L2 cost)
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Figure 5: Samples from MNIST dataset



Numerical Results on MNIST (L2 cost)

1st hidden layer 2nd hidden layer

output layer

input layer

Figure 6: Fully connected NN with 2 hidden layers



Numerical Results on MNIST (L2 cost)
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Figure 7: Manifolds in the latent space for various parameters



Learning the cost
Li et al. '17, Bellemare et al. '17

e On complex data sets, choice of a good ground metric ¢ is not
trivial

e Use parametric cost function cg(x,y) = [|f3(x) — f¢(y)||§
(where f;, : X — R9)

¢ Optimization problem becomes minmax (like GANs)
mingmaxg VT/%’E(,ug, v)

e Same approximations but alternate between updating the cost
parameters ¢ and the measure parameters 6



Numerical Results on CIFAR
(learning the cost)
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Figure 8: Samples from CIFAR dataset



Numerical Results on CIFAR
(learning the cost)

Deep convolutional GANs (DCGAN) [1511.06434]

Figure 9: Fully connected NN with 2 hidden layers



Numerical Results on CIFAR
(learning the cost)

(b) & = 1000

Figure 10: Samples from the generator trained on CIFAR 10 for MMD and
Sinkhorn loss (coming from the same samples in the latent space)



Numerical Results on CIFAR
(learning the cost)

Which image set is better? Not just about generating nice images,
but more about capturing a high dimensional distribution...

— Hard to evaluate.

MMD e =100 e=10 e=1
456+0.07 481+£005 4.79+0.13 4.43+0.07

Table 1: Inception Scores



Conclusion

e Take Home message : Sinkhorn Divergences allow to
interpolate between OT and MMD

e Future Work : Theory of Sinkhorn Divergences (positivity /
sample complexity)



