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Recurrent issue in ML : Fitting data to a probabilistic model

Figure 1: Density Fitting with a Gaussian Mixture
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Recurrent issue in ML : Fitting data to a probabilistic model

Figure 2: Density Fitting with a Gaussian Mixture
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Density Fitting with MLE

Observed dataset (y1, . . . , yn) ∈ X (IID assumption)
Empirical measure ν̂ = 1

n

∑n
i=1 δyi

Parametric model (µθ)θ∈Θ measure with density (fθ)θ∈Θ

Goal : find θ̂ = argminθ∈Θ L(µθ, ν̂) where L is a loss on measures.
Maximum Likelikood Estimator

θ̂
def.
= argmin

θ∈Θ
−

n∑
i=1

log f (yi | θ)
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Generative Models

Figure 3: Illustration of Density Fitting on a Generative Model
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Density Fitting for Generative Models I

Parametric model : µθ = gθ]ζ

ζ reference measure on (low dimensional) latent space Z
gθ : Z → X from latent space to data space

Sampling procedure : x ∼ µθ obtained by x = gθ(z) were z ∼ ζ
Very popular topic in ML : image generation
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Density Fitting for Generative Models II

Generative Models usually supported on low dimensional manifolds
(dim Z < dim X )
µθ doesn’t have density wrt Lebesgue measure

⇒ MLE can’t be applied in this context!

2 natural candidates emerge for L
I Maximum Mean Discrepency (based on Reproducing Kernel Hilbert

Spaces) → Hilbertian norm
I The Wasserstein Distance (based on Optimal Transport) →

Non-Hilbertian distance
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Reminders on Maximum Mean Discrepency I

Consider Reproducing Kernel Hilbert Space H with kernel k

f ∈ H ⇒ f (x) = 〈f , k(·, x)〉
MMD [Gretton et al. ’12]:

‖µ− ν‖k = Eµ⊗µ[k(x , x ′)] + Eν⊗ν [k(y , y ′)]− 2Eµ⊗ν [k(x , y)]

Usual kernels
I Gaussian kernel : k(x , y) = exp(‖x−y‖

2

σ )
I Energy distance kernel : k(x , y) = d(x , 0) + d(y , 0)− d(x , y)
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Reminders on Optimal Transport I

Optimal Transport : find coupling that minimizes total cost of moving
µ to ν whith unit cost function c
Constrained problem : coupling has fixed marginals
Minimal cost of moving µ to ν(e.g. solution of the OT problem) is
called the Wasserstein distance (it’s an actual distance!)
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Reminders on Optimal Transport II
Two positive Radon measures µ on X and ν on Y of mass 1
Cost c(x , y) to move a unit of mass from x to y
Set of couplings with marginals µ and ν
Π(µ, ν)

def.
= {π ∈M1

+(X × Y) | π(A× Y) = µ(A), π(X × B) = ν(B)}

What’s the coupling that minimizes the total cost?
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Reminders on Optimal Transport III

Main issues of Wasserstein distance :

Computationally Expensive : need to solve LP (in discrete case)

Poor Sample Complexity : W (µ, µ̂n) ∼ n−
1
d

→ scales exponentially with dimension (more on that in Francis’ talk)
→ need a lot of samples to get a good approximation of W
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Entropy!

Basically : Adding an entropic regularization smoothes the constraint
Makes the problem easier :

I yields an unconstrained dual problem
I discrete case can be solved efficiently with alternate maximizations on

the dual variables : Sinkhorn’s algorithm (more on that later)

For ML applications, regularized Wasserstein is better than standard one
In high dimension, helps avoiding overfitting
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Entropic Relaxation of OT [Cuturi ’13]

Add entropic Penalty to Kantorovitch formulation of OT

min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y) + εKL(π|µ⊗ ν)

where

KL(π|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dπ
dµdν

(x , y)
)
− 1
)
dπ(x , y)

Regularized loss :

Wc,ε(µ, ν)
def.
=

∫
XY

c(x , y)dπε(x , y)

where πε solution of (Pε)
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Sinkhorn Divergences : interpolation between OT and MMD

Theorem
The Sinkhorn loss between two measures µ, ν is defined as:

W̄c,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν)

with the following limiting behavior in ε:
1 as ε→ 0, W̄c,ε(µ, ν)→ 2Wc(µ, ν)

2 as ε→ +∞, W̄c,ε(µ, ν)→ ‖µ− ν‖−c
where ‖·‖−c is the MMD distance whose kernel is minus the cost from OT.

Remark : Some conditions are required on c to get MMD distance when
ε→∞. In particular, c = ‖·‖pp , 0 < p < 2 is valid.
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Density Fitting with Sinkhorn loss "Formally"

Solve minθ E (θ)

where E (θ)
def.
= W̄c,ε(µθ, ν)

⇒ Issue : untractable gradient
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Approximating Sinkhorn loss

Rather than approximating the gradient approximate the loss itself

Minibatches : Ê (θ)
I sample x1, . . . , xm from µθ
I use empirical Wasserstein distance Wc,ε(µ̂θ, ν̂) where µ̂θ = 1

N

∑m
i=1 δxi

Use L iterations of Sinkhorn’s algorithm : Ê (L)(θ)
I compute L steps of the algorithm
I use this as a proxy for W (µ̂θ, ν)

Aude Genevay (CEREMADE - INRIA) Learning Generative Models with Optimal Transport 16 / 27



Sinkhorn’s Algorithm

State of the art solver for discrete regularized OT
Two equivalent views

I Alternate projections on the constraints of the primal
I Alternate minimizations on the dual

Iterates (a, b) :

{
a← 1

K(b�ν)

b ← 1
KT (a�µ)

where K
def.
= exp −c

ε and � is coordinatewise vector multiplication.
Primal solution πε = diag(a)Kdiag(b)

Linear convergence of the iterates to the optimizers
Number of iterations needed for convergence increases when ε
descreases
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Computing the Gradient in Practice
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Figure 4: Scheme of the loss approximation

Compute exact gradient of Ê (L)(θ) with autodiff
Backpropagation through above graph
Same computational cost as evaluation of Ê (L)(θ)
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Numerical Results : a toy example

(a) MMD (b) ε = 1 (c) ε = 0.1 (d) ε = 0.01

Figure 5: Ellipses after convergence of the stochastic gradient descent with L = 20,
m = 200
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Numerical Results on MNIST (L2 cost)

Figure 6: Samples from MNIST dataset

Aude Genevay (CEREMADE - INRIA) Learning Generative Models with Optimal Transport 20 / 27



Numerical Results on MNIST (L2 cost)

Figure 7: Fully connected NN with 2 hidden layers

Aude Genevay (CEREMADE - INRIA) Learning Generative Models with Optimal Transport 21 / 27



Numerical Results on MNIST (L2 cost)

Figure 8: Manifolds in the latent space for various parameters
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Learning the cost [Li et al. ’17, Bellemare et al. ’17]

On complex data sets, choice of a good ground metric c is not trivial
Use parametric cost function cφ(x , y) = ‖fφ(x)− fφ(y)‖22
(where fφ : X → Rd )
Optimization problem becomes minmax (like GANs)

minθmaxφW̄cφ,ε(µθ, ν)

Same approximations but alternate between updating the cost
parameters φ and the measure parameters θ
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Numerical Results on CIFAR (learning the cost)

Figure 9: Samples from CIFAR dataset
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Numerical Results on CIFAR (learning the cost)

Figure 10: Fully connected NN with 2 hidden layers
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Numerical Results on CIFAR (learning the cost)

(a) MMD (b) ε = 1000 (c) ε = 10

Figure 11: Samples from the generator trained on CIFAR 10 for MMD and
Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but more about
capturing a high dimensional distribution... Hard to evaluate.

Aude Genevay (CEREMADE - INRIA) Learning Generative Models with Optimal Transport 26 / 27



Conclusion

Take Home message : Sinkhorn Divergences allow to interpolate
between OT and MMD
Future Work :

I Theory of Sinkhorn Divergences (positivity / sample complexity)
I Evaluation of generative models to study optimal choice of epsilon
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